

Blacktown Boys' High School

2022

HSC Trial Examination

Mathematics Extension 2

General

Instructions

- Working time 3 hours
- Write using black pen

• Reading time – 10 minutes

- Calculators approved by NESA may be used
- A reference sheet is provided for this paper
- All diagrams are not drawn to scale
- In Questions 11 16, show relevant mathematical reasoning and/or calculations

Total marks: Section I – 10 marks (pages 3 – 6)

100

- Attempt Questions 1 10
- Allow about 15 minutes for this section
- Section II 90 marks (pages 7 12)
 - Attempt Questions 11 16
 - Allow about 2 hours and 45 minutes for this section

Assessor: X. Chirgwin

Student Name:

Teacher Name:

Students are advised that this is a trial examination only and cannot in any way guarantee the content or format of the 2022 Higher School Certificate Examination.

- Blank Page -

Section I

10 marks Attempt Questions 1–10 Allow about 15 minutes for this section

Use the multiple choice answer sheet for Questions 1–10.

- Q1 Which of the following is the complex number $-3 3\sqrt{3}i$?
 - A. $6e^{-\frac{i\pi}{3}}$ B. $6e^{\frac{i\pi}{3}}$ C. $6e^{-\frac{2i\pi}{3}}$ D. $6e^{\frac{2i\pi}{3}}$

- Q2 What is the Cartesian equation of the line $r = \begin{pmatrix} 1 \\ 5 \end{pmatrix} + \lambda \begin{pmatrix} -3 \\ 2 \end{pmatrix}$?
 - A. 2x + 3y 17 = 0
 - B. 3x + 2y + 13 = 0
 - C. 2x 3y 13 = 0
 - D. 3x 2y + 17 = 0

BBHS 2022 HSC Mathematics Extension 2 Trial Examination

Q3 Using a suitable substitution $\int_{1}^{e^5} \frac{(\log_e x)^5}{x} dx$ may be expressed in terms of u as

A.
$$\int_{1}^{5} \frac{(\log_{e} u)^{5}}{u} du$$

B.
$$\int_{0}^{5} \frac{u^{5}}{e^{u}} du$$

C.
$$\int_{1}^{\log_{e} 5} u^{5} du$$

D.
$$\int_{0}^{5} u^{5} du$$

- Q4 Let $x \in \mathbb{Z}$. The contrapositive of the statement "If x is even, then 5x 11 is odd." is
 - A. If x is odd, then 5x 11 is even.
 - B. If 5x 11 is even, then x is odd.
 - C. If x is odd, then 5x 11 is odd.
 - D. If 5x 11 is odd, then x is even.
- Q5 Which of the following is the expression for $\int \sin^3 x \, dx$?
 - A. $\frac{1}{3}\cos^3 x \cos x + C$ B. $\frac{1}{3}\cos^3 x + \cos x + C$
 - C. $\frac{1}{3}\sin^3 x \sin x + C$
 - D. $\frac{1}{3}\sin^3 x + \sin x + C$

Q6 A particular complex number *z* is represented by the point on the following argand diagram.

The complex number $-i \overline{z}$ is best represented by?

- Q7 If 2i 3 is a root of the polynomial equation $5x^3 + mx^2 + 59x 13 = 0$, where m is real, then the value of m is
 - A. 31
 - B. -31
 - C. 29
 - D. –29

BBHS 2022 HSC Mathematics Extension 2 Trial Examination

- Q8 It is given that *a*, *b* are real, and *c*, *d* are purely imaginary. Which pair of inequalities must always be true?
 - A. $a^2c^2 + b^2d^2 \ge 2abcd, a^2b^2 + c^2d^2 \le 2abcd$
 - B. $a^2c^2 + b^2d^2 \ge 2abcd, a^2b^2 + c^2d^2 \ge 2abcd$
 - C. $a^2c^2 + b^2d^2 \le 2abcd, a^2b^2 + c^2d^2 \le 2abcd$
 - D. $a^2c^2 + b^2d^2 \le 2abcd, \quad a^2b^2 + c^2d^2 \ge 2abcd$
- Q9 A body is moving in a straight line and, after t seconds, it is x metres from the origin and travelling at $v ms^{-1}$. Given that v = x, and that t = 5 where x = -1, the equation for x in terms of t is
 - A. $x = \sqrt{2t 9}$
 - B. $x = -\sqrt{2t 9}$
 - C. $x = e^{5-t}$
 - D. $x = -e^{t-5}$
- Q10 Without evaluating the integrals, which one of the following integrals is greater than zero?

End of Section I

Section II

90 Marks Attempt Questions 11–16 Allow about 2 hours and 45 minutes for this section

Answer each question on a SEPARATE writing booklet. Extra writing booklets are available.

In Questions 11–16, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Use a SEPARATE writing booklet.

answer in the form x + iy.

a) Given that $z = \sqrt{3} - i$

- i) Express z in modulus-argument form. 2 ii) Use De Moivre's theorem to evaluate z^7 , and leave your answer in the form x + iy. iii) Use De Moivre's theorem to evaluate $\frac{z^7}{(\overline{z})^7}$, and leave your 2
- 2 1 2 1 2 2 2 2
- b) Let $p = \frac{2}{3}i + \frac{1}{3}j + \frac{2}{3}k$, $q = -\frac{1}{3}i \frac{2}{3}j + \frac{2}{3}k$ and $r = \frac{2}{3}i \frac{2}{3}j \frac{1}{3}k$

be vectors in 3-dimensional space defined by perpendicular unit vectors

i, j and k.

i) Show that p is a unit vector. 1 ii) Show that p, q and r are perpendicular to each other. 2 iii) Given that s = p + q + r, show that s = i - j + k. 1 iv) Given that $t = \frac{2}{\sqrt{3}} p - \sqrt{3}q + \frac{1}{\sqrt{3}}r$, find $s \cdot t$. 1

4

c) Show that
$$\int_0^1 \frac{2-x}{(1+5x^2)(1+10x)} dx = \frac{1}{10} \log_e \frac{121}{6}$$

End of Questions 11

BBHS 2022 HSC Mathematics Extension 2 Trial Examination

Question 12 (15 marks) Use a SEPARATE writing booklet.

a) Find

i)
$$\int \frac{1}{x} (1 + \log_e x)^6 dx$$
 2

ii)
$$\int \frac{1}{\sqrt{2+x} + \sqrt{x}} dx$$
 2

iii) $\int \sin^3 x \cos^2 x \, dx$ 3

iv)
$$\int \frac{2x+7}{x^2+10x+29} dx$$
 3

b) Let $P(x) = x^4 + ax^3 - 40x^2 + 41x + b$ where *a* and *b* are real numbers. It is known that x = 7 and $x = \frac{1 - i\sqrt{3}}{2}$ are zeros of P(x). i) Explain why $x^2 - x + 1$ must be a factor of P(x). 2

ii) Find a and b. 3

End of Questions 12

Question 13 (15 marks) Use a SEPARATE writing booklet.

a) Shade on the Argand diagram the region given by **3**

$$|z-2| \le 2 \quad \cap \quad -\frac{\pi}{4} \le \arg z < \frac{\pi}{6}$$

b) Consider the following two vectors, where *p* is a scalar constant,

$$\underset{\sim}{a} = 6\underset{\sim}{i} + p\underset{\sim}{j} - 13\underset{\sim}{k} \text{ and } \underset{\sim}{b} = (1 - 4p)\underset{\sim}{i} + (p + 3)\underset{\sim}{j} + 6k,$$

3

3

Find the values of *p* if *a* and *b* are perpendicular.

c) A particle of mass m is moving in a straight line under the action of a force **3**

$$F = \frac{m}{r^3}(4 - 7x)$$

Find the particle's velocity $v ms^{-1}$ in terms of its displacement *x*, if the particle has a velocity of $-1 ms^{-1}$ when the particle is 1 metre to the right of the origin.

d) Use integration by parts to find
$$\int e^x \cos 10x \, dx$$

e) i) Suppose
$$f(x) = \sqrt{1+x}$$
, show that $f'(x) < \frac{1}{6}$ for $x > 8$. 1
ii) Hence, show that $\sqrt{1+x} \le 3 + \frac{x-8}{6}$ when $x \ge 8$. 2

End of Questions 13

BBHS 2022 HSC Mathematics Extension 2 Trial Examination

Question 14 (15 marks) Use a SEPARATE writing booklet.

a) With respect to a fixed origin 0, the straight lines L_1 and L_2 have respective vector equations

$$r_1 = \begin{bmatrix} -1\\5\\-1 \end{bmatrix} + \lambda \begin{bmatrix} 1\\-2\\1 \end{bmatrix} \text{ and } r_2 = \begin{bmatrix} -3\\1\\5 \end{bmatrix} + \mu \begin{bmatrix} 1\\0\\-1 \end{bmatrix}$$

where λ and μ are scalar parameters.

The points A and C lie on L_1 and L_2 , where $\lambda = 0$ and $\mu = 0$, respectively.

i)	Find $ \overrightarrow{AC} $, in exact surd form.	2
ii)	Show that L_1 and L_2 intersect at some point <i>B</i> and find its coordinates.	2
iii)	Find the size of the angle θ , between L_1 and L_2 .	1
• 、	The waint D is such as that ADCD is a late. Characteristic the	•

- iv) The point *D* is such so that *ABCD* is a kite. Show that the area of the kite is $16\sqrt{3}$ square units.
- b) The velocity, $v ms^{-1}$, of a particle moving in Simple Harmonic Motion along the *x*-axis is given by the expression

$$v^2 = 72 + 18x - 9x^2$$

- i) Between which two points is the particle oscillating? 1
- ii) What is the amplitude of the motion? 1
- iii) Find the acceleration of the particle in terms of x. 1
- iv) Find the period of the oscillation. 1

c) i) Use mathematical induction to prove $3^n > n^3$ for all integers $n \ge 4$. **3**

ii) Hence or otherwise, show that $\sqrt[3]{3} > \sqrt[n]{n}$ for all integers $n \ge 4$. 1

End of Questions 14

Quest	ion 15	(15 marks) Use a SEPARATE writing booklet.	
a)	A par	ticle of unit mass moves in a straight line with variable acceleration	
	$\left(\frac{16}{v}\right)$	$v = v ms^{-2}$ where $v ms^{-1}$ is the velocity at time t seconds and $v > 0$,	
	and <i>x</i> veloci	is the displacement. If initially, the particle is at the origin with a ty of $v = 2 m s^{-1}$.	
	i)	Find an expression for the velocity v of the particle at time t seconds.	3
	ii)	Find the limiting velocity of the particle.	1
	iii)	Find the displacement of the particle when $v = 3 m s^{-1}$.	4
b)	i)	Use de Moivre's theorem to express $\cos 4\theta$ and $\sin 4\theta$ in terms of $\cos \theta$ and $\sin \theta$.	2
	ii)	Hence show that $\tan 4\theta = \frac{4 \tan \theta - 4 \tan^3 \theta}{1 - 6 \tan^2 \theta + \tan^4 \theta}.$	1
	iii)	Given $\alpha = \tan^{-1}\frac{1}{4}$, hence show that $4\alpha = \tan^{-1}\frac{240}{161}$.	1
	iv)	Write $161 + 240i$ in the form $r(\cos \theta + i \sin \theta)$, express θ in terms of α .	1
	v)	Hence, find in the form $a + bi$ where a and b are integers, the four fourth roots of $161 + 240i$.	2

End of Questions 15

BBHS 2022 HSC Mathematics Extension 2 Trial Examination

Question 16 (15 marks) Use a SEPARATE writing booklet.			
a)	Let In	$a_{n} = \int_{0}^{\frac{\pi}{2}} \cos^{n} \theta d\theta$, $n = 0, 1, 2,$	
	i)	Explain why $I_n < I_{n-1} < I_{n-2}$	1
	ii)	Prove that $I_n = \frac{n-1}{n} I_{n-2}$, $n = 2, 3, 4,$	3
	iii)	Deduce that $\lim_{n \to \infty} I_n = \lim_{n \to \infty} I_{n-1}$	1
	iv)	Use part ii) to show that $n \times I_n \times I_{n-1} = \frac{\pi}{2}$, $n = 1, 2, 3,$	2
	v)	Given that $\int_0^{\frac{\pi}{2}} \cos^{11}\theta d\theta = \frac{256}{693}$, evaluate $\int_0^{\frac{\pi}{2}} \cos^{10}\theta d\theta$	1
	vi)	Find an approximate value of $\int_0^{\frac{\pi}{2}} \cos^{2021} \theta d\theta$, to 4 significant	1
		figures.	
b)	i)	Show that for all values of <i>a</i> and <i>b</i> , $\sin a \sin b \le \left[\sin\left(\frac{a+b}{2}\right)\right]^2$	2

ii) Hence show that if $\sin a > 0$, $\sin b > 0$, $\sin c > 0$, $\sin d > 0$, then

$$\sin a \sin b \sin c \sin d \le \left[\sin \left(\frac{a+b+c+d}{4} \right) \right]^4$$
 3

1

iii) By choosing a suitable expression for *d*, show that

$$\sin a \sin b \sin c \le \left[\sin \left(\frac{a+b+c}{3} \right) \right]^3$$

End of Paper

Student Name:

Multiple Choice Answer Sheet

Select the alternative A, B, C or D that best answers the question. Fill in the response oval completely.

Sample:	2 + 4 =	(A) 2	(B) 6	(C) 8	(D) 9
		$A \bigcirc$	В 🔴	СО	D 🔿

If you think you have made a mistake, put a cross through the incorrect answer and fill in the new answer.

If you change your mind and have crossed out what you consider to be the correct answer, then indicate the correct answer by writing the word 'correct' and drawing an arrow as follows.

	2022 Mathematics Extension 2 AT4 Trial So	lutions
Section 1 Q1	c $ -3 - 3\sqrt{3}i = 6$ $\arg(-3 - 3\sqrt{3}i) = -\frac{2\pi}{3}$ $-3 - 3\sqrt{3}i = 6e^{-\frac{2i\pi}{3}}$	1 Mark
Q2	A $x = 1 - 3\lambda (1)$ $y = 5 + 2\lambda (2)$ From (1) $\lambda = \frac{1 - x}{3}$ Sub into (2) $y = 5 + 2\left(\frac{1 - x}{3}\right)$ $3y = 15 + 2 - 2x$ $2x + 3y - 17 = 0$	1 Mark
Q3	D $I = \int_{1}^{e^{5}} \frac{(\log_{e} x)^{5}}{x} dx$ Let $u = \log_{e} x$ $du = \frac{1}{x} dx$ $x = e^{5}, u = 5$ $x = 1, u = 0$ $I = \int_{0}^{5} u^{5} du$	1 Mark
Q4	B "If A, then B" statements, contrapositive is "If not B, then not A" "If x is even, then $5x - 11$ is odd" Contrapositive is "If $5x - 11$ is not odd, then x is not even" which is the same as "If $5x - 11$ is even, then x is odd."	1 Mark
Q5	A $\int \sin^3 x dx$ $= \int \sin x (\sin^2 x) dx$ $= \int \sin x (1 - \cos^2 x) dx$ $= \int \sin x dx - \int \sin x \cos^2 x dx$ $= -\cos x + \frac{1}{3} \cos^3 x + C$ $= \frac{1}{3} \cos^3 x - \cos x + C$	1 Mark
Q6	B \overline{z} is reflected along the horizontal axis to z, then $-i\overline{z}$ rotate \overline{z} clockwise by 90°	1 Mark

07	C	1 Mark
~	If the polynomial is real, then complex roots appear in conjugate pair	2 1110111
	If one of the root is $-3 + 2i$, then $-3 - 2i$ is also a root, let the third	
	root be ν	
	$\binom{2}{3} + \binom{2}{3} + \binom{2}$	
	$(-3+2i)+(-3-2i)+i = -\frac{1}{5}$	
	$\gamma = -\frac{m}{5} + 6 (1)$	
	$\frac{3}{12}$	
	$(-3+2i)(-3-2i)\gamma = \frac{12}{5}$	
	$13\gamma = \frac{13}{5}$	
	1	
	$\gamma = \frac{1}{5}$	
	Subject (1)	
	1 m	
	$\frac{1}{5} = -\frac{1}{5} + 6$	
	m = 29	
Q8	D	1 Mark
	Since a, b are real, and c, d are purely imaginary,	
	then ab, cd are real, so $ab - cd$ is also real	
	also ac, bd are purely imaginary, so $ac - bd$ is also purely imaginary	
	$(ab - ca)^2 \ge 0$	
	$a^{2}b^{2} + c^{2}a^{2} \ge 2abca$ $(ac - bd)^{2} \le 0$	
	$(ac - ba) \le 0$ $a^2c^2 + b^2d^2 \le 2abcd$	
Q9	D	1 Mark
	dx - x	
	$\frac{dt}{dt}$	
	$\int \frac{dx}{dt} = \int dt$	
	$\int x \int dx = t + C$	
	$ \prod_{x = 1}^{n} \lambda_{x} = t + C $	
	At $t = 5, x = -1$	
	$-1 = Ae^5$	
	$A = -\frac{1}{2} = -e^{-5}$	
	e^5	
	$r = -e^{-5} \times e^{t}$	
	$\therefore x = -e^{t-5}$	
Q10	В	1 Mark
	The functions in C and D are odd, so they both equal 0.	
	A, the function is even but maximum value of $e^{-x^2} - 2$ is -1 , so the	
	integral results in a negative value.	
	B is the only one that is even and positive for the given boundaries.	
1		1

Section 2		
Q11ai	$z = \sqrt{3} - i$	2 Marks
	$z = 2\left(\cos\left(-\frac{\pi}{2}\right) + i\sin\left(-\frac{\pi}{2}\right)\right)$	Correct solution
		1 Mark
		Correct mod or arg
Q11aii	$z^7 = \left(2\left(\cos\left(-\frac{\pi}{2}\right) + i\sin\left(-\frac{\pi}{2}\right)\right)\right)'$	2 Marks
	$2 = \left(2\left(\cos\left(-\frac{6}{6}\right) + i\sin\left(-\frac{6}{6}\right)\right)\right)$	Correct solution
	$z^{7} = 2^{7} \left(\cos \left(-\frac{7\pi}{n} \right) + i \sin \left(-\frac{7\pi}{n} \right) \right)$	1 Mark
	$ = \left(\begin{array}{c} \cos\left(\begin{array}{c} 6 \end{array}\right) + \cos\left(\begin{array}{c} 6 \end{array}\right) \right) $	Correctly applies De
	$z^{7} = 2^{7} \left(\cos \left(-\frac{7\pi}{6} \right) + i \sin \left(-\frac{7\pi}{6} \right) \right)$	Moivre's theorem
	$(\sqrt{3} 1)$	
	$z^7 = 128\left(-\frac{10}{2} + i \times \frac{1}{2}\right)$	
	$(2^{7}64\sqrt{2} + 64)$	
	$2 = -04\sqrt{5} + 04i$	
011aiii	z ⁷	2 Marks
	$\frac{-}{(\overline{z})^7}$	Correct solution
	$27\left(\cos\left(-7\pi\right) + i\sin\left(-7\pi\right)\right)$	
	$=\frac{2\left(\cos\left(-\frac{1}{6}\right)+i\sin\left(-\frac{1}{6}\right)\right)}{2}$	1 Mark
	$2^7 \left(\cos\left(\frac{7\pi}{6}\right) + i \sin\left(\frac{7\pi}{6}\right) \right)$	Finds
	$(7\pi 7\pi)$ $(7\pi 7\pi)$	$(\overline{z})^7 = 2^7 \left(\cos \left(\frac{7\pi}{6} \right) + i \sin \left(\frac{7\pi}{6} \right) \right)$
	$= \cos\left(-\frac{1}{6} - \frac{1}{6}\right) + i \sin\left(-\frac{1}{6} - \frac{1}{6}\right)$	
	$=\cos\left(-\frac{7\pi}{2}\right)+i\sin\left(-\frac{7\pi}{2}\right)$	
	$= \cos\left(\frac{3}{3}\right) + \cos\left(\frac{3}{3}\right)$	
	$=\frac{1}{2}-\frac{\sqrt{3}}{2}i$	
	2 2	
O11bi		1 Mark
	$ n = \binom{2}{2}^{2} + \binom{1}{2}^{2} + \binom{2}{2}^{2} = \frac{9}{2} = 1$	Correct solution
	$ ^{P}_{\sim} = \sqrt{(3)^{-1}(3)^{-1}(3)^{-1}(9)^{-1}}$	
	$\therefore p$ is a unit vector	
	~	
Q11bii	2 (1) + 1 (2) + 2 (2)	2 Marks
	$p \cdot q = \frac{1}{3} \times (-\frac{1}{3}) + \frac{1}{3} \times (-\frac{1}{3}) + \frac{1}{3} \times \frac{1}{3} = 0$	Correct solution
	$a \cdot r = \left(-\frac{1}{2}\right) \times \frac{2}{2} + \left(-\frac{2}{2}\right) \times \left(-\frac{2}{2}\right) + \frac{2}{2} \times \left(-\frac{1}{2}\right) = 0$	
	$2^{-1} \sim (3)^{-1} ($	1 Mark
	$p \cdot r = \frac{2}{3} \times \frac{2}{3} + \frac{1}{3} \times \left(-\frac{2}{3}\right) + \frac{2}{3} \times \left(-\frac{1}{3}\right) = 0$	Shows one pair of vectors
	$\sim \sim 3$ 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	are perpendicular
0116:::		1 Marile
Q11biii	$ \sum_{n=1}^{\infty} \sum_{$	1 Mark
	$s = \left(\frac{2}{i} + \frac{1}{i} + \frac{2}{k}\right) + \left(-\frac{1}{i} - \frac{2}{i} + \frac{2}{k}\right) + \left(\frac{2}{i} - \frac{2}{i} - \frac{1}{k}\right)$	
	$\begin{bmatrix} 2 & (3^{2} + 3^{2} + 3^{2} + (3^{2} + 3^{2} + (3^{2} + 3^{2} + 3^{2} + (3^{2} + 3^{2} + 3^{2} + 3^{2} + (3^{2} + 3^{2} + 3^{2} + 3^{2} + (3^{2} + 3^{2} + 3^{2} + 3^{2} + (3^{2} + 3^{2} + 3^{2} + 3^{2} + 3^{2} + (3^{2} + 3^{2} + 3^{2} + 3^{2} + 3^{2} + 3^{2} + (3^{2} + 3^{2}$	
	$s = \left(\frac{2}{2} - \frac{1}{2} + \frac{2}{2}\right)i + \left(\frac{1}{2} - \frac{2}{2} - \frac{2}{2}\right)j + \left(\frac{2}{2} + \frac{2}{2} - \frac{1}{2}\right)k$	
	$\begin{vmatrix} 2 & 3 & 3 \\ 3 & -i \\ 5 & -i \\ 4 & -i \\ -i \\ -i \\ -k \\ -k \\ -k \\ -k \\ -k \\$	
01165		1 Mark
QTTDIV	$s \cdot t = (p+q+r) \cdot \left(\frac{2}{\sqrt{2}}p - \sqrt{3}q + \frac{1}{\sqrt{2}}r\right)$	L IVIDIN
	$\begin{bmatrix} 2 & 2 & 2 & 2 \\ 2 & 2 & 2 & 2 \end{bmatrix} = \begin{bmatrix} \sqrt{3} & 2 & \sqrt{3} \\ 1 & 2 & 2 & 2 \end{bmatrix}$	
	$ \int_{-\infty}^{\infty} \frac{s \cdot t}{\sqrt{3}} = 1 \times \frac{1}{\sqrt{3}} + 1 \times (-\sqrt{3}) + 1 \times \frac{1}{\sqrt{3}} $	
	$s \cdot t = 0$	
	~ ~	

	$= \frac{1}{2} \left[\frac{(2+x)^{\frac{3}{2}}}{\frac{3}{2}} - \frac{x^{\frac{3}{2}}}{\frac{3}{2}} \right] + C$ $= \frac{1}{3} \left[(2+x)^{\frac{3}{2}} - x^{\frac{3}{2}} \right] + C$	
Q12aiii	$I = \int \sin^3 x \cos^2 x dx$	3 Marks
	$= \int (1 - \cos^2 x) \cos^2 x \sin x dx$	concer solution
	$= \int (\cos^2 x - \cos^4 x) \sin x dx$	2 Marks Correct integration in terms of <i>u</i>
	Let $u = \cos x$, $du = -\sin x dx$	1 Mark Obtains
	$I = -\int (u^2 - u^4) du$	$\int (1 - \cos^2 x) \cos^2 x \sin x dx$
	$I = -\frac{u^3}{3} + \frac{u^5}{5} + C$	
	$I = -\frac{\cos^3 x}{3} + \frac{\cos^5 x}{5} + C$	
Q12aiv	$\int \frac{2x+7}{x^2+10x+29} dx$	3 Marks Correct solution
	$= \int \frac{2x+10}{x^2+10x+29} - \frac{3}{x^2+10x+25+4} dx$	2 Marks Completes the square and makes significant progress
	$= \int \frac{2x+10}{x^2+10x+29} - \frac{3}{(x+5)^2+2^2} dx$	1 Mark
	$= \log_e x^2 + 10x + 29 - \frac{3}{2} \tan^{-1} \frac{(x+5)}{2} + C$	numerator
Q12bi	Since $P(x)$ is real, then complex roots appears in conjugate pairs.	2 Marks
	If $x = \frac{1 - i\sqrt{3}}{2}$ is a root, then $x = \frac{1 + i\sqrt{3}}{2}$ is also a root.	Correct solution
	The roots are $7, \frac{1-i\sqrt{3}}{2}, \frac{1+i\sqrt{3}}{2}, \alpha$	1 Mark
	$P(x) = (x - 7)(x - \alpha) \left(x - \frac{1 - i\sqrt{3}}{2} \right) \left(x - \frac{1 + i\sqrt{3}}{2} \right)$	Identifies $x = \frac{1 + i\sqrt{3}}{2}$
	$\frac{1 - i\sqrt{3}}{2} + \frac{1 + i\sqrt{3}}{2} = 1 = -\frac{b}{2}$	
	$\left(\frac{1-i\sqrt{3}}{2}\right)\left(\frac{1+i\sqrt{3}}{2}\right) = 1 = \frac{c}{a}$	
	P(x) = (x - 7)(x - α)(x2 - x + 1) ∴ (x ² - x + 1) is a factor of P(x).	
Q12bii	$P(x) = (x^{2} - (7 + \alpha)x + 7\alpha)(x^{2} - x + 1)$ $P(x) = x^{4} + ax^{3} - 40x^{2} + 41x + b$	3 Marks Correct solution
	Compare the coefficient of the <i>x</i> term	2 Marks
	$-(7 + \alpha) \times 1 + 7\alpha \times (-1) = 41$ $-7 - \alpha - 7\alpha = 41$	Finds $x = -6$ as a root and either <i>a</i> or <i>b</i>
	$-8\alpha = 48$	
	u = -0	1 Mark Finds $x = -6$ as a root

213d	$I = \int e^{x} \cos 10x dx$ $u = \cos 10x \qquad v' = e^{x}$ $u' = -10 \sin 10x \qquad v = e^{x}$ $I = e^{x} \cos 10x + 10 \int e^{x} \sin 10x dx$ $u = \sin 10x \qquad v' = e^{x}$ $u' = 10 \cos 10x \qquad v = e^{x}$ $I = e^{x} \cos 10x + 10 \left(e^{x} \sin 10x - \int 10e^{x} \cos 10x dx \right)$ $I = e^{x} \cos 10x + 10e^{x} \sin 10x - 100I + C$ $101I = e^{x} \cos 10x + 10e^{x} \sin 10x + C$ $I = \frac{e^{x} \cos 10x + 10e^{x} \sin 10x}{101} + C$	3 Marks Correct solution 2 Marks Makes significant progress 1 Mark Correctly applies integration by parts
Q13ei	$f(x) = \sqrt{1+x}$ $f'(x) = \frac{1}{2}(1+x)^{-\frac{1}{2}} = \frac{1}{2\sqrt{1+x}}$ $f'(x) = \frac{1}{2\sqrt{1+x}}$ Since $x > 8$ $\sqrt{1+x} > \sqrt{1+8}$ $\sqrt{1+x} > 3$ $2\sqrt{1+x} > 6$ $\frac{1}{2\sqrt{1+x}} < \frac{1}{6}$ $\therefore f'(x) < \frac{1}{6}, x > 8$	1 Mark Correct solution
Q13eii	Let $g(x) = 3 + \frac{x-8}{6}$ $g'(x) = \frac{1}{6}$ $f'(x) < \frac{1}{6}, x > 8$ $\therefore f'(x) < g'(x), x > 8$ Also $g(8) = 3 = f(8)$ $\therefore f(x) \le g(x), x \ge 8$ $\therefore \sqrt{1+x} \le 3 + \frac{x-8}{6}, x \ge 8$	2 Marks Correct solution 1 Mark Shows $f'(x) < g'(x)$
Q14ai	$\begin{split} r_{1} &= \begin{bmatrix} -1\\5\\-1 \end{bmatrix} + \lambda \begin{bmatrix} 1\\-2\\1 \end{bmatrix}, r_{2} &= \begin{bmatrix} -3\\1\\5 \end{bmatrix} + \mu \begin{bmatrix} 1\\0\\-1 \end{bmatrix} \\ \lambda &= 0, \ \alpha &= \begin{bmatrix} -1\\5\\-1 \end{bmatrix}, \ \mu &= 0, \ c &= \begin{bmatrix} -3\\1\\5 \end{bmatrix} \\ \overrightarrow{AC} &= c - \alpha &= \begin{bmatrix} -2\\-4\\6 \end{bmatrix} \\ \overrightarrow{AC} &= \sqrt{(-2)^{2} + (-4)^{2} + 6^{2}} \\ \overrightarrow{AC} &= \sqrt{56} \\ \overrightarrow{AC} &= 2\sqrt{14} \end{split}$	2 Marks Correct solution 1 Mark Finds \overline{AC}

Q14bii	$\frac{1}{2} \times (4 - (-2)) = 3$ Amplitude is 3	1 Mark Correct solution
Q14biii	$v^{2} = 72 + 18x - 9x^{2}$ $\frac{1}{2}v^{2} = 36 + 9x - \frac{9}{2}x^{2}$ $\ddot{x} = \frac{d}{dx}\left(\frac{1}{2}v^{2}\right)$ $\ddot{x} = 9 - 9x$	1 Mark Correct solution
Q14biv	$\begin{aligned} \ddot{x} &= 9 - 9x \\ \ddot{x} &= -3^2(x-1) \\ \therefore n &= 3 \\ T &= \frac{2\pi}{n} \\ T &= \frac{2\pi}{3} \end{aligned}$	1 Mark Correct solution
Q14ci	RTP: $3^n > n^3$, for all integers $n \ge 4$ 1. Prove statement is true for $n = 4$ $LHS = 3^4 = 81$ $RHS = 4^3 = 64$ LHS > RHS \therefore statement is true for $n = 4$ 2. Assume statement is true for $n = k$, where $k \ge 4$ i.e. $3^k > k^3 \to 3^k - k^3 > 0$ 3. Prove statement is true for $n = k + 1$ i.e. $3^{k+1} > (k + 1)^3 \to 3^{k+1} - (k + 1)^3 > 0$ Consider $3^{k+1} - (k + 1)^3$ $3^{k+1} - (k + 1)^3$ $3^{3^k + 1} - (k + 1)^3$ $3^{3^k - k^3} - 3k^2 - 3k - 1$ $= 3(3^k - k^3) + 2k^3 - 3k^2 - 3k - 1$ $= 3(3^k - k^3) + (k^3 - 3k^2 - 3k - 1) + k^3 - 6k$ $= 3(3^k - k^3) + (k - 1)^3 + k(k^2 - 6)$ $3^k - k^3 > 0$ from assumption, so $3(3^k - k^3) > 0$ $k - 1 > 0$ as $k \ge 4$, so $(k - 1)^3 > 0$ $k^2 - 6 > 0$ as $k \ge 4$, so $(k^2 - 6) > 0$ Then $3(3^k - k^3) + (k - 1)^3 + k(k^2 - 6) > 0$ $3^{k+1} - (k + 1)^3 > 0$ $\therefore 3^{k+1} > (k + 1)^3$ By mathematical induction, $3^n > n^3$, for all integers $n \ge 4$	3 Marks Correct solution 2 Marks Makes significant progress 1 Mark Proves the initial statement
Q14cii	$3^{n} > n^{3}$ $(3^{n})^{\frac{3}{3n}} > (n^{3})^{\frac{1}{3n}}$ $3^{\frac{3}{3}} > n^{\frac{1}{n}}$ $\therefore \sqrt[3]{3} > \sqrt[n]{n}$	1 Mark Correct solution

Q15ai	" <i>(</i> 16)	3 Marks
	$x = \left(\frac{1}{v} - v\right)$	Correct solution
	$dv = 16 - v^2$	
	$\frac{dt}{dt} = \frac{v}{v}$	2 Marks
	$\frac{dt}{dt} = \frac{v}{v}$	Makes significant progress or
	$dv = \frac{16}{16} - v^2$	finds
	$t = -\frac{1}{2}\log_e 16 - v^2 + C$	$C = \frac{1}{2} ln 12$
	$2c - 2t - \log 16 - v^2 $	$c = \frac{1}{2}$
	$Ae^{-2t} = 16 - v^2$	
	$v^2 = 16 - Ae^{-2t}$	1 Mark
	$n = \pm \sqrt{16 - 4e^{-2t}}$	t in terms of a
	Since $n > 0$ then $n = \sqrt{16 - 4e^{-2t}}$	
	Since $\nu > 0$, then $\nu = \sqrt{10} - Ac$	
	t = 0, v = 2	
	$2 = \sqrt{16 - 4}$	
	A = 12	
	n = 12	
	$v = \sqrt{16 - 128}$	
Q15aii	$t \to \infty, 12e^{-2t} \to 0$	1 Mark
	$v \rightarrow \sqrt{16-0}$	Correct solution
	$v \to 4 m/s$	
Q15aiii	<i>dv</i> 16	4 Marks
	$v \frac{1}{dx} = \frac{1}{v} - v$	Correct solution
	$\frac{dv}{dv} = \frac{16}{10} = 1$	
	$dx v^2$	3 Marks
	$\frac{dx}{dt} = \frac{v^2}{v^2}$	Finds the correct value of C
	$dv = 16 - v^2$	
	$\frac{dx}{dt} = \frac{-(10-v)+10}{10-v}$	2 Marks
	$\frac{dv}{dx} = \frac{16 - v^2}{16}$	Finds
	$\frac{dm}{dn} = \frac{1}{16 - n^2} - 1$	$\frac{dx}{dy} = \left(\frac{2}{4-y} + \frac{2}{4+y}\right) - 1$
	dx (2, 2)	
	$\frac{dv}{dv} = \left(\frac{1}{4-v} + \frac{1}{4+v}\right) - 1$	
	$x = 2\log_e 4 + v - 2\log_e 4 - v - v + C$	1 Mark
	$r = 2 \log \left \frac{4 + v}{4 + v} \right - v + C$	Finds
	$x = 2 \log_{\theta} 4 - v $	$\frac{dv}{dt} = \frac{16}{16} - 1$
		$dx v^2$
	x = 0, v = 2	
	$0 = 2 \log_e \left \frac{1+2}{4-2} \right - 2 + C$	
	$C = 2 - 2 \log_2 3$	
	4+v	
	$\therefore x = 2 \log_e \left \frac{1}{4 - v} \right - v + 2 - 2 \log_e 3$	
	v = 3	
	$x = 2 \log_{2} \left \frac{4+3}{3} \right - 3 + 2 - 2 \log_{2} 3$	
	$x = 2 \log (7 - 1) - 2 \log 3$	
	$x = 2 \log_e 7 = 1 - 2 \log_e 5$ (7)	
	$x = 2\log_e\left(\frac{1}{3}\right) - 1$	
Q15bi	$(\cos \theta + i \sin \theta)^4 = \cos 4\theta + i \sin 4\theta$ (de Moivre's theorem)	2 Marks
	$= \cos^4 \theta + 4i \cos^3 \theta \sin \theta - 6 \cos^2 \theta \sin^2 \theta - 4i \cos \theta \sin^3 \theta$	Correct solution
	$+\sin^4 \theta$	
		1 Mark
	Equate real: $\cos 4\theta = \cos^4 \theta - 6 \cos^2 \theta \sin^2 \theta + \sin^4 \theta$	Equate either real or
	Equate imaginary: $\sin 4\theta = 4 \cos^3 \theta \sin \theta - 4 \cos \theta \sin^3 \theta$	imaginary

Q15bii	$\tan 4\theta = \sin 4\theta$	1 Mark
	$\tan 4\theta = \frac{1}{\cos 4\theta}$	Correct solution
	$\tan 4\theta = \frac{4\cos^2\theta\sin\theta - 4\cos\theta\sin^2\theta}{\cos^2\theta\sin^2\theta + \sin^2\theta} \div \frac{\cos^2\theta}{\cos^2\theta}$	
	$4 \tan \theta - 4 \tan^3 \theta$	
	$\tan 4\theta = \frac{1}{1 - 6\tan^2\theta + \tan^4\theta}$	
015hiii	1	1 Mark
QIJDIII	$\alpha = \tan^{-1} \frac{1}{4}$	Correct solution
	$\tan \alpha = \frac{1}{2}$	
	4 (1) (1) ³	
	$\tan 4\alpha = \frac{4 \times (\frac{\pi}{4}) - 4 \times (\frac{\pi}{4})}{2}$	
	$1-6 \times \left(\frac{1}{4}\right)^2 + \left(\frac{1}{4}\right)^4$	
	$\tan 4\alpha = \frac{240}{10}$	
	$161 \\ 240$	
	$4\alpha = \tan^{-1} \frac{210}{161}$	
0156	14(1 + 240;1 - 200	1 Marti
QISDIV	161 + 240i = 289	Correct solution
	$\arg(161 + 240i) = \tan^{-1}\frac{1}{161} = 4\alpha$	
	$161 + 240i = 289(\cos 4\alpha + i \sin 4\alpha)$	
Q15bv	Let $z^4 = 161 + 240i$	2 Marks
	$z^4 = 289 \operatorname{cis}(4\alpha + 2k\pi)$ where $n \in \mathbb{Z}$	Correct solution
	$z = 289^{\frac{1}{4}} \operatorname{cis} \left(\alpha + \frac{k\pi}{2} \right)$	1 Mark
	$= \sqrt{17} \operatorname{sig} \left(x + k\pi \right)$	Makes significant progress
	$z = \sqrt{17} \operatorname{cis}\left(a + \frac{1}{2}\right)$	and finds one of the solution
	$k = 0, z_1 = \sqrt{17} \cos \alpha$	in $a + ib$ form
	$k = 1, z_2 = \sqrt{17} \cos\left(\alpha + \frac{1}{2}\right)$	
	$k = 2, z_3 = \sqrt{17} \operatorname{cis}(\alpha + \pi)$	
	$k = 3, z_4 = \sqrt{17} \operatorname{cis} \left(\alpha + \frac{\alpha \pi}{2} \right) = \sqrt{17} \operatorname{cis} \left(\alpha - \frac{\pi}{2} \right)$	
	$\tan \alpha = \frac{1}{4}$	
	$\sqrt{17}$	
	α \Box^1	
	4	
	$\sin \alpha = \frac{1}{\sqrt{17}}, \cos \alpha = \frac{4}{\sqrt{17}}$	
	$z_1 = \sqrt{17} (\cos \alpha + i \sin \alpha) = \sqrt{17} \left(\frac{4}{\sqrt{17}} + i \frac{1}{\sqrt{17}}\right)$	
	$z_1 = 4 + i$	
	$z_2 = \sqrt{17} \left(\cos\left(\alpha + \frac{\pi}{2}\right) + i \sin\left(\alpha + \frac{\pi}{2}\right) \right) = \sqrt{17} \left(-\frac{1}{\sqrt{17}} + i \frac{4}{\sqrt{17}} \right)$	
	$z_2 = -1 + 4i$	
	$z_3 = \sqrt{17}(\cos(\alpha + \pi) + i\sin(\alpha + \pi)) = \sqrt{17}\left(-\frac{4}{\sqrt{17}} - i\frac{1}{\sqrt{17}}\right)$	
	$z_3 = -4 - i$	
	$z_4 = \sqrt{17} \left(\cos\left(\alpha - \frac{\pi}{2}\right) + i \sin\left(\alpha - \frac{\pi}{2}\right) \right) = \sqrt{17} \left(\frac{1}{\sqrt{17}} - i \frac{4}{\sqrt{17}}\right)$	
	$z_4 = 1 - 4i$ \therefore the roots $4 + i$, $-1 + 4i$, $-4 - i$, $1 - 4i$	

Q16ai	$\begin{array}{l} 0 < x < \frac{\pi}{2}, 0 < \cos x < 1\\ \cos^{n} x, \operatorname{as} n \to \infty, \cos^{n} x \to 0^{+}\\ \therefore \cos^{n} x < \cos^{n-1} x < \cos^{n-2} x\\ \therefore l_{n} < l_{n-1} < l_{n-2} \end{array}$	1 Mark Correct solution
Q16aii	$\begin{split} & I_n = \int_0^{\frac{\pi}{2}} \cos^n \theta d\theta = \int_0^{\frac{\pi}{2}} \cos \theta \cos^{n-1} \theta d\theta \\ & u = \cos^{n-1} \theta \qquad v' = \cos \theta \\ & u' = -(n-1) \sin \theta \cos^{n-2} \theta \qquad v = \sin \theta \\ & I_n = \left[\sin \theta \cos^{n-1} \theta \right]_0^{\frac{\pi}{2}} + (n-1) \int_0^{\frac{\pi}{2}} \sin^2 \theta \cos^{n-2} \theta d\theta \\ & I_n = \left(\sin \frac{\pi}{2} \times \cos^{n-1} \frac{\pi}{2} - \sin 0 \times \cos^{n-1} 0 \right) \\ & + (n-1) \int_0^{\frac{\pi}{2}} \sin^2 \theta \cos^{n-2} \theta d\theta \\ & I_n = (n-1) \int_0^{\frac{\pi}{2}} (1 - \cos^2 \theta) \cos^{n-2} \theta d\theta \\ & I_n = (n-1) \int_0^{\frac{\pi}{2}} (\cos^{n-2} \theta - \cos^n \theta) d\theta \\ & I_n = (n-1) I_{n-2} - (n-1) I_n \\ & I_n + (n-1) I_n = (n-1) I_{n-2} \\ & (1+n-1) I_n = (n-1) I_{n-2} \\ & I_n = \frac{n-1}{n} I_{n-2} \end{split}$	3 Marks Correct solution 2 Marks Makes significant progress 1 Mark Integrate by parts
Q16aiii	$\begin{split} & I_n = \left(1 - \frac{1}{n}\right) I_{n-2} \\ & n \to \infty, \ \frac{1}{n} \to 0, \ 1 - \frac{1}{n} \to 1 \\ & \therefore \lim_{n \to \infty} I_n = \lim_{n \to \infty} I_{n-2} \\ & \text{From part i,} I_n < I_{n-1} < I_{n-2} \\ & \therefore \lim_{n \to \infty} I_n = \lim_{n \to \infty} I_{n-1} \end{split}$	1 Mark Correct solution
Q16aiv	From part ii, $I_{n} = \frac{n-1}{n} I_{n-2}$ $n \times I_{n} \times I_{n-1}$ $= n \times \frac{n-1}{n} I_{n-2} \times \frac{n-2}{n-1} I_{n-3}$ $= (n-2) \times I_{n-2} \times I_{n-3}$ $= \cdots$ $= 1 \times I_{1} \times I_{0}$ $= \int_{0}^{\frac{\pi}{2}} (\cos \theta) d\theta \times \int_{0}^{\frac{\pi}{2}} (\cos \theta)^{0} d\theta$ $= \int_{0}^{\frac{\pi}{2}} (\cos \theta) d\theta \times \int_{0}^{\frac{\pi}{2}} 1 d\theta$ $= [\sin \theta]_{0}^{\frac{\pi}{2}} \times [\theta]_{0}^{\frac{\pi}{2}}$ $= (\sin \frac{\pi}{2} - \sin 0) \times (\frac{\pi}{2} - 0)$ $= \frac{\pi}{2}$	2 Marks Correct solution 1 Mark Deduces $n \times l_n \times l_{n-1}$ $= (n-2) \times l_{n-2} \times l_{n-3}$

Q16av	Given that	1 Mark
	$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} 11 \circ 10 = 256$	Correct solution
	$I_{11} = \int_0^1 \cos^{11}\theta d\theta = \frac{1}{693}$	
	From part iv π	
	$11 \times I_{11} \times I_{10} = \frac{1}{2}$	
	$I_{10} = \frac{\pi}{2} \div 11 \div \frac{256}{602}$	
	$\begin{array}{c} 2 \\ 63\pi \end{array}$	
	$I_{10} = \frac{1}{512}$	
016avi	From part iii and iv, as $n \to \infty$	1 Mark
QIOUN	$n \times I_n \times I_{n-1} \approx n \times (I_n)^2$	Correct solution
	_	
	$2021 \times (I_{2021})^2 \approx \frac{n}{2}$	
	$I \sim \pi^{-2}$	
	$r_{2021} \approx \sqrt{4042}$	
	$I_{2021} \approx 0.0278789 \dots$ $I_{2021} = 0.02788 (4 sig fig)$	
	12021 - 0.027 00 (4 55. 16)	
Q16bi	$\left[\sin\left(a+b\right)\right]^2 - \sin a \sin b$	2 Marks
	$\left[\sin\left(\frac{2}{2}\right) \right]^{-\sin \alpha} \sin b$	Correct solution
	$= \left[\sin\frac{a}{2}\cos\frac{b}{2} + \sin\frac{b}{2}\cos\frac{a}{2}\right]^{2} - \sin\left(2\times\frac{a}{2}\right)\sin\left(2\times\frac{b}{2}\right)$	1 Mark
		Makes significant progress
	$= \left(\sin^2 \frac{a}{\cos^2 \frac{b}{2}} + 2\sin \frac{a}{\cos^2 \frac{b}{2}} \sin \frac{b}{\cos^2 \frac{a}{2}} + \sin^2 \frac{b}{\cos^2 \frac{a}{2}}\right)$	
	$= (3m^2 2 cos^2 + 2m^2 2 cos^2 3m^2 2 cos^2 + 3m^2 2 cos^2 2)$	
	$-2\sin\frac{\pi}{2}\cos\frac{\pi}{2} \times 2\sin\frac{\pi}{2}\cos\frac{\pi}{2}$	
	a h h a a h h a	
	$= \sin^2 \frac{a}{2} \cos^2 \frac{b}{2} + \sin^2 \frac{b}{2} \cos^2 \frac{a}{2} + 2 \sin \frac{a}{2} \cos \frac{b}{2} \sin \frac{b}{2} \cos \frac{a}{2}$	
	abbaa a bbaa a bbaa a baa a baaa a baa a	
	$a_{a}^{a} a_{a}^{a} b_{a}^{b} a_{a}^{b} a_{a}^{a} a_{a}^{b} a_{a$	
	$= \sin^{-}\frac{1}{2}\cos^{-}\frac{1}{2} + \sin^{-}\frac{1}{2}\cos^{-}\frac{1}{2} - 2\sin^{-}\frac{1}{2}\cos^{-}\frac{1}{2}\sin^{-}\frac{1}{2}\cos^{-}\frac{1}{2}\sin^{-}\frac{1}{2}\cos^{-}\frac{1}{2}\sin^{-}\frac{1}{2}\cos^{-}\frac{1}{2}\sin^{-}\frac{1}{2}\cos^{-}\frac{1}{2}\sin^{-}\frac{1}{2}\cos^{-}\frac{1}{2}\sin^{-}\frac{1}{2}\cos^{-}\frac{1}{2}\sin^{-}\frac{1}{2}\cos^{-}\frac{1}{2}\sin^{-}\frac{1}{2}\cos^{-}\frac{1}{2}\sin^{-}\frac{1}{2}\cos^{-}\frac{1}{2}\sin^{-}\frac{1}{2}\cos^{-}\frac{1}{2}\sin^{-}\frac{1}{2}\cos^{-}\frac{1}{2}\sin^{-}\frac{1}{2}\cos^{-}\frac{1}{2}\sin^{-}\frac{1}{2}\cos^{-}\frac{1}{2}\sin^{-}\frac{1}{2}\cos^{-}\frac{1}{2}\sin^{-}\frac{1}{2}\cos^{-}\frac{1}{2}\cos^{-}\frac{1}{2}\sin^{-}\frac{1}{2}\sin^{-}\frac{1}{2}\cos^{-}\frac{1}{2}\cos^{-}\frac{1}{2}\sin^{-}\frac{1}{2}\cos^{-}\frac{1}{2}\sin^{-}\frac{1}{2}\cos^{-}$	
	$=\left[\sin\frac{a}{2}\cos\frac{b}{2}-\sin\frac{b}{2}\cos\frac{a}{2}\right]^{2}$	
	$\begin{bmatrix} 2 & 2 & 2 & 2 \end{bmatrix}$	
	$= \left[\sin\left(\frac{\pi}{2}\right)\right]$	
	h2	
	$\left[\sin\left(\frac{a-b}{2}\right)\right]^2 \ge 0$	
	$\begin{bmatrix} (2) \end{bmatrix}^2$	
	$\left\lfloor \frac{\sin\left(\frac{1}{2}\right)}{2}\right\rfloor - \sin a \sin b \ge 0$	
	$r (a + b) r^2$	
	$ \therefore \sin a \sin b \le \left \sin \left(\frac{a + b}{2} \right) \right $	
L		
Q16bii	$\left \sin a \sin b < \left[\sin\left(\frac{a+b}{a}\right)\right]^2\right $	3 Marks
	$\begin{bmatrix} c & c & b \\ c & c & c & c \\ c & c & c & c \\ c & c &$	Correct solution
	$\left \sin c \sin d \le \left \sin \left(\frac{c + u}{2} \right) \right \right $	2 Marks
		Makes significant progress

	$\sin a \sin b \sin c \sin d \le \left[\sin\left(\frac{a+b}{2}\right)\right]^2 \left[\sin\left(\frac{c+d}{2}\right)\right]^2$ $\sin a \sin b \sin c \sin d \le \left[\sin\left(\frac{a+b}{2}\right)\sin\left(\frac{c+d}{2}\right)\right]^2$	1 Mark Obtains $\sin a \sin b \sin c \sin d$ $\leq \left[\sin\left(\frac{a+b}{2}\right)\sin\left(\frac{c+d}{2}\right)\right]^2$
	$\sin\left(\frac{a+b}{2}\right)\sin\left(\frac{c+d}{2}\right) \le \left[\sin\left(\frac{a+b}{2}+\frac{c+d}{2}\right)\right]^2$ $\sin\left(\frac{a+b}{2}\right)\sin\left(\frac{c+d}{2}\right) \le \left[\sin\left(\frac{a+b+c+d}{4}\right)\right]^2$	
	$\left[\sin\left(\frac{a+b}{2}\right)\sin\left(\frac{c+d}{2}\right)\right]^2 \le \left[\left[\sin\left(\frac{a+b+c+d}{4}\right)\right]^2\right]^2$ $\left[\sin\left(\frac{a+b}{2}\right)\sin\left(\frac{c+d}{2}\right)\right]^2 \le \left[\sin\left(\frac{a+b+c+d}{4}\right)\right]^4$	
	$\therefore \sin a \sin b \sin c \sin d \le \left[\sin \left(\frac{a+b+c+d}{4} \right) \right]^4$	
Q16biii	$Let \ d = \frac{1}{3}(a+b+c)$	1 Mark Correct solution
	$\sin a \sin b \sin c \sin \left(\frac{a+b+c}{3}\right)$ $\leq \left[\sin\left(\frac{a+b+c+\frac{a+b+c}{3}}{4}\right)\right]^4$	
	$\sin a \sin b \sin c \sin \left(\frac{a+b+c}{3}\right)$ $\leq \left[\sin\left(\frac{a+b+c+\frac{a+b+c}{3}}{4}\right)\right]^{4}$ $\sin a \sin b \sin c \sin\left(\frac{a+b+c}{3}\right)$ $\leq \left[\sin\left(\frac{3a+3b+3c}{3}+\frac{a+b+c}{3}\right)\right]^{4}$	